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Abstract
The modulational instability (MI) of the coupled nonlinear Schrödinger and
nonlinear Klein–Gordon equations is investigated. It is found that there are
a number of possibilities for the MI regions due to the generalized dispersion
relation, which relates the frequency and wavenumber of the modulating
perturbations. Some exact travelling wave solutions are constructed via the
solutions of a φ4 model through a simple mapping relation. Furthermore, we
present five different types of solutions representing possible final states of
modulationally unstable perturbations. The profiles of solitary wave structures
are displayed for some fixed parameters.

PACS numbers: 52.35.−g, 05.45.Yv

1. Introduction

The nonlinear Schrödinger equation coupled with a nonlinear Klein–Gordon equation in the
(1 + 1)-dimensional case reads

i
∂ψ

∂t
+ α

∂2

∂x2
ψ + ρφψ = 0, (1)

and

∂2φ

∂t2
− c2

0
∂2

∂x2
φ + µ2φ + γ |φ|2φ − β|ψ |2 = 0. (2)

The system of equations (1) and (2), which is known as the coupled Schrödinger–Klein–
Gordon (S-KG) model, is a classical example describing a system of conserved scalar nucleons
interacting with neutral scalar mesons where the dynamics of these fields are coupled through
the Yukawa interaction [1]. In this context, ψ represents a complex scalar nucleon field and
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φ a real scalar meson field, the real constant µ is the mass of a meson, g and ρ are quadratic
coupling constants, the γ -term describes the auto-interaction, α and c2

0 are constants.
Both the nonlinear Schrödinger (NLS) and nonlinear Klein–Gordon (KG) equations have

been widely used to study the dynamics of small but finite amplitude nonlinearly interacting
perturbations in many-body physics [2], in nonlinear optics [3] and optical communications
[4], in nonlinear plasmas [5, 6] and complex geophysical flows [7], as well as in intense laser–
plasma interactions and nonlinear quantum electrodynamics [8]. For example, the NLSE with
a cubic nonlinearity is a suitable model for the nonlinear pulse propagation in Kerr media [10],
photonics [9] and optical fibre communications [4, 11, 12], as well as in unmagnetized plasmas
[13, 14, 18, 19], while the nonlinear KG equation [16] without a driver governs the dynamics
of nonlinear trapped ion modes [15] in nonuniform magnetoplasmas. Furthermore, equations
similar to (1) and (2) may describe the dynamics of coupled electrostatic upper-hybrid and
ion-cyclotron waves in a uniform magnetoplasma [17].

One of the distinguishing features of the present system of equations (1) and (2) is the
presence of a cubic auto-interaction effect in the Klein–Gordon field. Without the auto-
interaction, namely γ = 0, the system (also in higher dimensions (2 + 1) or (3 + 1)) has
been investigated, such as its Cauchy problem and initial boundary value problem [1, 20], the
solitary wave solutions [21], etc. The existence and uniqueness of global solutions for rough
data of the S-KG system with quadratic coupling and cubic auto-interactions have been proved
recently in [22].

In this paper, we use equations (1) and (2) to investigate the modulational instabilities and
their possible stationary states in the form of localized structures. The paper is organized in
the following fashion. In section 2, we derive a nonlinear dispersion relation which depicts the
modulational instabilities of a constant amplitude carrier wave. Possible exact travelling wave
solutions of (1) and (2) are obtained in section 3. Specifically, five types of explicit analytical
solutions are presented, and their relations to modulationally stable or unstable scenario are
established. The profiles of different nonlinear excitations are graphically exhibited. A
summary and discussion of our work is contained in section 4.

2. Modulational instability analysis

The modulational instability analysis is usually carried out by means of the following scheme.
First, we have to find an equilibrium state of the system of equations under investigation,
which is simple and exact monochromatic wave solutions. Second, we have to add a small
perturbation on the equilibrium state with a perturbation wavenumber and frequency, which
are much smaller than those of the carrier wave. The small perturbation functions satisfy a set
of equations from which one deduces the nonlinear dispersion relation. The latter is analysed
to obtain a complex frequency, revealing the growth of the amplitude-modulated wave packet.
Based on the above idea, we analyse the coupled S-KG equations (1) and (2) in this section.

An equilibrium state can be obtained by inserting the assumption

ψ = ψ0 eiωt , φ = φ0, (3)

where the constants ω, φ0 are real and ψ0 is complex, into the coupled S-KG equations (1)
and (2). A simple calculation gives

ω = ρφ0, (4)

and

γφ3
0 + µ2φ0 − β|ψ0|2 = 0. (5)
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Next, we introduce a small perturbation around the above stationary state and linearize
the coupled S-KG equations by substituting

ψ = (ψ0 + εψ1) eiρφ0t , φ = φ0 + εφ1, (6)

with (5), into (1) and (2). Writing ψ1 = u + iv,ψ0 = a + ib (u, v, a, b are real) and separating
the real and imaginary parts of the linearized equations (the first-order terms of ε), we obtain

α
∂2u

∂x2
− ∂v

∂t
+ aρφ1 = 0, (7)

α
∂2v

∂x2
+

∂u

∂t
+ bρφ1 = 0, (8)

and

∂2φ1

∂t2
− c2

0
∂2φ1

∂x2
+ µ2φ1 + 3γ 2φ2

0φ1 − 2β(au + bv) = 0. (9)

Now we let u, v and φ1 vary as u0 ei(Kx−
t) + cc, v0 ei(Kx−
t) + cc, φ10 ei(Kx−
t) + c.c.,
where K and 
 are the perturbation wavenumber and the frequency, respectively, and c.c.
stands for the complex conjugate. After some straightforward calculations, we obtain the
nonlinear dispersion relation


4 − P
2 + Q = 0, (10)

where

P = α2K4 + c2
0K

2 + µ2 + 3γφ2
0 , (11)

and

Q = α2c2
0K

6 + α2
(
µ2 + 3γφ2

0

)
K4 − 2αρφ0

(
µ2 + γφ2

0

)
K2. (12)

Obviously, equation (10) has the solution


2
± = 1

2

[
P ±

√
P 2 − 4Q

]
. (13)

It is noted that the coupled S-KG equations are modulationally stable for any wavenumber
K if and only if 
2

± are both positive real numbers. It is easy to check that, in order to have
positive real 
2

±, the following three conditions should be simultaneously satisfied:

P > 0, Q > 0, � > 0, (14)

where � = P 2 − 4Q is the discriminant quantity given by

� = (
α2K4 − c2

0K
2 − µ2 − 3γφ2

0

)2
+ 8αρβ|ψ0|2K2. (15)

The first stability condition P > 0 is easily satisfied for any K when µ2 + 3γφ2
0 > 0.

Otherwise, there is a critical value

Kcr,1 =

− c2

0

2α2
+

1

2

[
c4

0

α4
− 4

(
µ2 + 3γφ2

0

)
α2

]1/2



1/2

(16)

below which P is negative. In this case, we either have 
2
− < 0 < 
2

+ or 
2
− < 
2

+ < 0. It is
remarkable that if there is no auto-interaction effect in the coupled S-KG equations, namely,
γ = 0, then this first stability condition (P > 0) is always satisfied for any perturbation
wavenumber K.
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Let us consider the second stability condition Q > 0 in detail. We see that Q = 0 has
two nonzero roots for K2, namely,

K2
Q± = −µ2 + 3γφ2

0

2c2
0

± 1

2

[(
µ2 + 3γφ2

0

c2
0

)2

+
8βρ|ψ0|2

αc2
0

]1/2

≡ −µ2 + 3γφ2
0

2c2
0

± 1

2

√
�Q, (17)

with (5). Therefore, Q > 0 for any K requires either

(i) that �Q < 0. This is only possible for the perturbation amplitudes ψ0 and φ0 satisfying
a specific relation besides (5). Thus, this case cannot be generally ensured for arbitrary
perturbation amplitudes or

(ii) that �Q > 0 and K2
Q± are both negative real values. It is ensured if µ2 + 3γφ2

0 > 0 and
αβρ < 0. Otherwise, if µ2 + 3γφ2

0 < 0 and αβρ < 0, then we have K2
Q+ > K2

Q− > 0 and
it will be unstable in the region K2

Q− < K2 < K2
Q+. If αβρ > 0, then K2

Q− < 0 < K2
Q+

and it is unstable when K2 < K2
Q+.

Finally, let us check the last stability condition � > 0. Evidently, this condition is always
satisfied when Q < 0. However, for Q > 0, this condition is ensured for any K when
αβγ > 0. Otherwise, we have to consider the inequality

� = d8K
8 + d6K

6 + d4K
4 + d2K

2 + d0 > 0, (18)

with

d8 = α4, d6 = −2c2
0α

2, d4 = c4
0 − 2α2(µ2 + 3γφ2

0

)
,

(19)
d2 = 2c2

0

(
µ2 + 3γφ2

0

)
+ 8αρβ|ψ0|2, d0 = (

µ2 + 3γφ2
0

)2
.

In order to identify the region for K where the waves are unstable, we have to find the roots
for � = 0. It is not so easy as the previous conditions, since we have to employ the existing
complicated analytical formulae and the associated criteria for the roots of an eighth-order
polynomial (or a fourth order for K2).

We note that the S-KG system is modulationally unstable when one or more of the
above conditions are violated. For example, the growth rate of instability is σ =

√
−
2

− for
P < 0,Q < 0, and the corresponding wavenumber ranges are determined by [0,Kcr,1] and
either [0,KQ+] or [KQ−,KQ+], depending on the parameter values. The instability for this
case is manifested as a purely growing mode. For � < 0, all the solutions of (10) are complex.
Consequently, the growth rate σ is determined by the imaginary part Im(
2

±) = ±√|�|/2.
From the above analysis, we note that several different unstable wavenumber regimes may

appear, either partially superimposed or distinct from each other. It is shown that instability
growth rate may be dramatically affected by the auto-interaction. When the system has a
negative auto-interaction, then it may have a higher instability growth rate with an enlarged
unstable wavenumber region, as indicated in figure 1.

3. Exact solutions

Many exact solutions of the coupled S-KG equations (1) and (2) with γ = 0 have been
obtained [21]. In the following, we present stationary solutions of equations (1) and (2).

In order to obtain some exact stationary solutions, we first introduce the assumption
ψ = u exp(ikx − iωt), where u(x, t) is a real function and k and ω are constants. With this
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Figure 1. The instability growth rate σ =
√

−
2− is plotted versus the perturbation wavenumber

K for the parameter values α = c0 = ρβ = |ψ0|2 = 1 and µ2 + 3φ2
0γ = 1 for the solid line and

µ2 + 3φ2
0γ = −1 for the dotted line.

ansatz, we obtain from (1) and (2)

α
∂2u

∂x2
+ (ω − αk2 + ρφ)u = 0, (20)

∂u

∂t
+ 2αk

∂u

∂x
= 0, (21)

and
∂2φ

∂t2
− c2

0
∂2φ

∂x2
+ µ2φ + γφ3 − βu2 = 0. (22)

The general solution of (21) reads

u = u(a(x − 2αkt)) ≡ u(X), (23)

so that equation (20) becomes

αa2 ∂2u

∂X2
+ (ω − k2α)u + ρφu = 0. (24)

Along the travelling line X = a(x − 2αkt), equation (22) can be rebuilt by φ(x, t) ≡ φ(X) as

a2
(
c2

0 − 4α2k2
) ∂2φ

∂X2
+ βu2 − µ2φ − γφ3 = 0. (25)

Now, we are left to solve equations (24) and (25). They cannot, however, be solved simply
by integration due to the coupling between u and φ.

In the past, a deformation mapping method [25] (and references therein) has been used
to solve nonlinear differential equations. Furthermore, the F-expansion method and its
generalization have been widely used to solve the coupled S-KG equations with γ = 0
[21].

In the following, we will simply deform the solutions of equations (24) and (25) to the
solutions of the φ4 model

f 2
X = Pf 4 + Qf 2 + R, (26)

with constants P,Q and R. A large number of exact solutions of (26) can be found in [21, 25],
which can then be used to construct the solutions of the coupled S-KG equations.

A type of mapping relation can be easily established by using the idea of the truncated
Painlevé approach [26]. A straightforward calculation gives a simple polynomial expansion
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type relation

u = U0 + U1f + U2f
2 + U3f

3, φ = V0 + V1f + V2f
2, (27)

where Ui, Vj (i = 0, 1, 2, 3, j = 0, 1, 2) are constants, and f is given by (26).
Substituting (27) into (24) and (25), and taking advantage of (26) to cancel all the

derivatives of fnX (n > 1) and the powers of f n
X (n > 1), collecting all the coefficients of

different powers of f (the terms with fX have been cancelled), we obtain a set of algebraic
equations

(12a2αP + ρV4)U6 = 0, (6αa2P + ρV4)U5 + ρV3U6 = 0, γ V 3
4 − βU 2

6 = 0, (28)

2αa2U5R + (ρV2 − k2α + ω)U3 = 0, 3γV3V
2

4 − 2βU5U6 = 0, (29)

−2βU4U5 − 2βU3U6 + 6γV2V3V4 + γV 3
3 + 2a2

(
4α2k2 − c2

0

)
PV3 = 0, (30)

3γV 2
3 V4 + 6a2

(
4α2k2 − c2

0

)
PV4 − βU 2

5 + 3γV2V
2

4 − 2βU4U6 = 0, (31)

(ω − k2α + ρV2 + 4αa2Q)U5 + ρV3U4 + ρU3V4 = 0, (32)

(ω − αk2 + ρV2 + αa2Q)U4 + 6αa2RU6 + ρU3V3 = 0, (33)

(ω − αk2 + ρV2 + 9αa2Q)U6 + ρV3U5 + (2αa2P + ρV4)U4 = 0, (34)

4a2
(
4α2k2 − c2

0

)
QV4 − 2βU3U5 + µ2V4 − βU 2

4 + 3γV2
(
V2V4 + V 2

3

) = 0, (35)

µ2V3 − 2βU3U4 + a2(4α2k2 − c2
0

)
QV3 + 3γV 2

2 V3 = 0, (36)

µ2V2 − βU 2
3 + 2a2

(
4α2k2 − c2

0

)
RV4 + γV 3

2 = 0. (37)

Solving equations (28)–(37) by Maple, we obtain

U0 = U2 = V1 = 0, V0 = −ρ
(
c2

0 − 4α2k2
)

6γα
− 8αa2PU1

ρU3
, (38)

V2 = −12αa2P

ρ
, ω = αk2 +

ρ2
(
c2

0 − 4α2k2
)

24αγ
− α2γβU 3

1

ρ
(
c2

0 − 4α2k2
)2

U3

, (39)

U 2
3 = −1728γα3a6P 3

ρ3β
, Q = ρ2

(
c2

0 − 4α2k2
)

72γα2a2
+

2PU1

U3
+

αγβU 3
1

9a2ρ
(
c2

0 − 4α2k2
)2

U3

, (40)

R = ρ2
(
c2

0 − 4α2k2
)
U1

54γα2a2U3
+

PU 2
1

U 2
3

+
4γβαU 4

1

27a2ρ
(
c2

0 − 4α2k2
)2

U 2
3

, (41)

µ2 = −ρ2
(
c2

0 − 4α2k2
)2

36γα2
+

βρU 2
1

36αa2P
+

4αγβU 3
1

9ρ
(
c2

0 − 4α2k2
)
U3

. (42)

Hence, the travelling wave solutions of equations (1) and (2) are

ψ = (U1 + U3f
2)f exp

{
i

[
kx −

(
αk2 +

ρ2
(
c2

0 − 4α2k2
)

24αγ
− α2γβU 3

1

ρ
(
c2

0 − 4α2k2
)2

U3

)
t

]}
, (43)

and

φ = −ρ
(
c2

0 − 4α2k2
)

6γα
− 8αa2PU1

ρU3
− 12αa2P

ρ
f 2, (44)

where f ≡ f (X) satisfies (26), X = a(x−2αkt), U1, U3, a and k are determined by (40)–(42).
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Figure 2. Plot of the amplitude of ψ with the upper sign (dotted line) and φ (solid line) expressed
by (45) and (46), respectively, with the parameter values µ = α = ρ = β = 1, γ = − 1

6 .

In the following, we list some simple explicit solutions. For simplicity, if we choose
P = 1,Q = −2, R = 1, then the solution of (26) is f = tanh(X). In this case, we obtain
two types of solutions.

Solution 1

ψ = ±3µ2

√√√√ α

2ρβ

√
− ρ2

6γµ2α2
tanh(X) sech2(X) exp

(
i

(
kx − α

(
µ2 + 4k4α2 − k2c2

0

)
4α2k2 − c2

0

t

))
,

(45)

and

φ = 3µ2α

ρ

√
− ρ2

6γµ2α2
sech2(X), (46)

with

k = ±1

2

√√√√ c2
0

α2
−

√
−6γµ2

ρ2α2
, a = ±

√√√√µ2

4

√
−6γµ2α2

ρ2
. (47)

Evidently, for this type of solution, we must have γ < 0 and αβρ > 0; therefore, from
the modulationally instability analysis in the last section, it can be deduced that this solution
is associated with modulationally unstable perturbations in some regions due to Q < 0 (or
P < 0 too).

The structure of this solution is plotted in figure 2 for some parameter values. It shows
that the two waves have vanishing boundary conditions at infinity, namely, φ,ψ → 0 when
x → ±∞. The wave governed by the KG field has a larger positive amplitude, while the
other wave is weak and asymmetric. In this case, the resultant field in the near positive x
region might be strengthened and the near negative region might be weakened, which means
that these two waves might interact in a complicated fashion in the region around the centre.
In other words, the phenomenon described in figure 1 can be viewed as an interaction between
a bright soliton and a dipole-type soliton.
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Figure 3. Plot of the amplitude of ψ with the upper sign (dotted line) and φ (solid line) expressed
by (48) and (49), respectively, where the parameter values are c0 = β = α = ρ = µ = 1, γ =
−0.03, a and k are determined as ∼0.73 and ∼0.12, respectively.

Solution 2

ψ = ±24

5

√
−3γ a6α3

ρ3β
[3 − 5 tanh2(X)] tanh(X)

× exp

(
i

(
kx − 6γα2(36a2 + 5k2) − 5ρ2

(
4α2k2 − c2

0

)
30γα

t

))
, (48)

and

φ = ρ
(
4α2k2 − c2

0

)
6αγ

+
12a2α

5ρ
[2 − 5 tanh2(X)], (49)

with k and a determined by

125ρ6(4α2k2 − c2
0

)3 − 7200ρ4α2γ
(
4α2k2 − c2

0

)2
a2 − 373 248γ 3a6α6 = 0, (50)

25ρ4
(
4α2k2 − c2

0

)2 − 960γα2a2
(
4α2k2 − c2

0

)
ρ2 + 12α2γ (432γα2a4 + 25µ2ρ2) = 0. (51)

In this class of solution, it is required that γαρβ < 0. In order to have real solutions of
a and k from (50) and (51), after some trial and error, we find that γ might be a small negative
value (not proven). Therefore, similar to solution 1, it will be associated with modulationally
unstable perturbations in some regions for Q < 0 (or P < 0 too).

For some parameter values, this solution can have structures, as shown in figure 3. It is
seen that the wave governed by the KG field approaches a positive value when x → ±∞,
while the other wave has a same asymptotic value when x → −∞ and a different negative
value when x → ∞. The wave governed by the NLS equation can be viewed as a kind of
shock wave with a small oscillation around the centre. In this case, the coupled S-KG system
can support two different types of waves, say, a bright solitary wave and a shock wave. Similar
to the waves in figure 2, the wave governed by the KG field plays a dominant role.

If we choose a solution of (26) as f = sech(X) for P = −1,Q = 1, R = 0, we then
obtain three types of explicit solutions.
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Figure 4. Plot of the amplitude of ψ with the upper sign (dotted line) and φ (solid line) expressed
by (52) and (53), respectively, with the parameter values µ = β = 1, γ = −1.

Solution 3

ψ = ± 1

16

√
−30µ3A

β
[4 − 5 sech2(X)] sech(X)

× exp

(
i

(
kx − 8ρAc2

0γ − 48µαγ + 5µρ2α

32γρAα
t

))
, (52)

and

φ = 5

4
µA sech(X)2, (53)

where

A = ±
√

− 3

2γ

and

k = ±
√

c2
0

4α2
− 3µ

2ρAα
, a = ±1

4

√
5ρAµ

3α
. (54)

It is obvious that γ < 0. After some simple deduction, we find that αρβ < 0.
Consequently, this class of solution may also be associated with modulationally unstable
perturbations due to Q < 0 (or P < 0 too).

Different from the previous two figures, figure 4 shows two waves in similar structures.
The wave governed by the KG field has a nonzero (positive) boundary value, while the other
wave has a zero boundary value when x → ±∞. Hence, we can say that the KG field can
support a dark soliton while the NLS field supports a bright soliton, and thus the interaction
phenomenon between a dark soliton and a bright soliton might be observed in the S-KG
system.

Solution 4

ψ = ±
√

− µ3

γβA
sech3(X) exp

(
i

(
kx − ρc2

0γA − 6γµα + µρ2α

4αργA
t

))
, (55)
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Figure 5. Plot of the amplitude of ψ with the upper sign (dotted line) and φ (solid line) expressed
by (55) and (56), respectively, with the parameter values µ = β = 1, γ = −1.

and

φ = µA tanh2(X), (56)

where

A = ±
√

− 1

γ

and

k = ±
√

c2
0

4α2
+

3γAµ

2ρα
, a = ±1

2

√
µρ

3αγA
. (57)

Similar to the solution 3, for real A, we require γ < 0, and no matter what sign one
chooses for A, we must have αρβ < 0. Therefore, this class of solution is also associated with
modulationally unstable perturbations for the same reason as the previous solutions.

Figure 5 is plotted for this solution. Contrary to the waves shown in figure 4, now the
wave governed by the KG field has a zero boundary value, while the other wave has a nonzero
(negative) boundary value when x → ±∞. Again, the two waves have totally different
structures around the centre. In this case, the KG field supports a grey soliton, while the NLS
field supports a W -type soliton. Hence, the interaction between a grey soliton and a W -type
soliton might be observed in the system with some particular parameters.

Solution 5

ψ = ±24

5

√
3γα3a6

ρ3β
[4 − 5 sech2(X)] sech(X) ei(kx−ωt), (58)

and

φ = 25µ2ρ2 − 768γ a4α2

300γραa2
+

12αa2

ρ
sech2(X), (59)

where

k = ±
√

144γ a2

25ρ2
+

c2
0

4α2
+

µ2

8α2a2
,

(60)

ω = 3α(48γ + 13ρ2)a2

25ρ2
+

c2
0

4α
− µ2(2ρ2 − 3γ )

24αγ a2
,
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Figure 6. Plot of the amplitude of ψ with the upper sign (dotted line) and φ (solid line) expressed
by (58) and (59), respectively, where the parameter values are µ = ρ = α = 1, β = γ = −1 and

a is determined as
√

450+30
√

33
48 ∼ 0.52.

and a is determined by

589 824γ 2α4a8 + 51 600µ2ρ2γα2a4 + 625µ4ρ4 = 0. (61)

It is obvious that αβγρ > 0. In order to obtain a real solution of a from equation (61), it
can easily be proven that γ must be negative. Hence, αβρ < 0; which means that this type
of solution is also associated with modulationally unstable perturbations because Q < 0 (or
P < 0 too).

This type of solution is plotted in figure 6 for some parameter values. It is found that
the two wave packages approach zero when x → ±∞, and they also possess different
structures around the centre. In this figure, a dark soliton is generated for the KG field and
an M-type soliton for the NLS field, which means that an interesting interaction between a
dark soliton and an M-type soliton might occur in the S-KG system under some particular
parameters.

4. Summary and discussion

In this paper, we have studied the properties of the nonlinear Schrödinger equation coupled with
the nonlinear Klein–Gordon equation that includes the cubic auto-interaction. Specifically,
we have investigated the modulational instabilities and associated stationary nonlinear states
of finite amplitude excitations that are governed by the S-KG equations (1) and (2). Standard
techniques of the parametric instabilities have been used to derive the nonlinear dispersion
relation (NDR) from the S-KG equations. The NDR reveals pronounced modulational
instability in the presence of a negative cubic auto-interaction in the KG equation. Furthermore,
we have found extended regimes for the modulationally unstable wavenumbers in our S-KG
system of equations.

We have presented five different types of exact stationary solutions of equations (1) and
(2). These solutions have been analytically constructed by exploiting the φ4 model. For a set
of parameters, we have worked out the profiles of the nonlinear structures numerically.

Figures 2–6 show numerically that the Klein–Gordon field shares a similar shape for all
these solutions, while the amplitude of the function ψ assumes quite different shapes, which
means that the S-KG system can have various nonlinear waves, such as the bright, dark, grey,
dipole-type, W -type and M-type solitons and shock waves. Moreover, interesting interactions
between a bright soliton and a dark or dipole-type or W -type solitons or a shock wave, and
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between a dark and an M-type soliton, might be observed in the S-KG system for different
parameter values.

Our results for the modulational instabilities and associated nonlinear structure should
be useful for understanding the propagation of nonlinearly interacting fields in magnetized
plasmas, in nonlinear optics and in particle physics. Furthermore, it should be stressed
that the dynamics of different classes of localized nonlinear solutions can be studied by
solving equations (1) and (2) numerically, by using our stationary nonlinear solutions as initial
conditions. However, such an investigation is beyond the scope of the present paper.
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